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LEXTER TO THE EDITOR 

Classification of quantum group structures on the group GL(2) 

B A Kupershmidt 
Univarily of Tmesae Space Institute, Tdlahoma, RI 37388, USA 

Received 9 November 1993 

Absbact All quantum group structures on the group GL(2) are classified. In addition to 
the known quantum groups GLqe(2) and GLw(Z), there exists one exceptional new quan- 
tum group CL&.) 

The problem of classifying all quantum group structures on a given Lie group is, in 
general, a hopeless one even in the quasiclassical limit. Exceptions are either special 
type groups, such as complex semisimple (Belavin and Drinfel'd 1982) or the group of 
formal diffeomorphisms of the line (Kupershmidt and Stoyanov 1992), or else groups 
of small dimension. The group GL(2), one of the most popular quantum objects, has 
dimension 4 which, though not small, is not too large either. Moreover, all quantum 
structures on GL(2) can be classified. 

The known quantum structures on GL(2) are of two types: GL,,(2) (Manin 1991) 
and GLhr(2) (Aghamohammadi 1993). They are described by the following relations 
on the elements a, b, c, d of a 2 x  2 quantum matrix M=(: 2): 

ac=q-'ca bd=q-'db ab=p-'ba 

cd=p-'dc bc = q-lpcb [a. dl = (q-' - p ) d  

[c, d ]  = - h'c2 [a, d]=hcd-h'ca (2) 

(1) 

[a, c] = hc2 [b, d]=h(d*+cb-ad+hcd) 

[b, c]=hdc+h'ca [a, b] =h'(ad- bc - 2 +Wac). 

Each of these quantum groups satislies the PBW property and has a multiplicative 
quantum determinant: 

Det,,(M) =da-pcb=ad-p-lbc (3) 
Deth,,(M) =ad- bc +h'ac= da- cb- h'ca. (4) 

Multiplicativity means that the identity 

Det(MIM2) = Det(M1) Det(M2) 
is satisfied for any two quantum matrices M I  and MI with mutually commuting entries. 
The quantum determinants Det,,(,, (3) and DebJ,. (4) are central only when: (i) p =  
q, in which case one recovers the quantum group GLq(2) (Drinfel'd 1986a); and (ii) 
h'=h, when one obtains the quantum group GLh(2) (Zakrzewski 1991). In (Kuper- 
shmidt 1992) I proved that GL,(2) and GL,,(2) are the only, up to isomorphism, quan- 
tum group structures on GL(2) with a central quantum determinant. (At the time I 
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was not aware of the Zakrzewski paper which was subsequently brought to my attention 
by P Kulish.) If the quantum determinant is allowed not to be central, are there any 
other quantum group structures on GL(2), beside GLq,(2) (1) and GLhfl(2) (2)? 

There exists just one such, GL,,(Z), given by the relations 

[a,c]=O [b, d]=O 

ab=qba- ha2- h'b2+ h(ad-qbc+ huc+h'bd) 

cd= qdc- h? -h'd2 +K(ad- qbc+ hac+ h'bd) 

cb=qbc-hac-h'bd [U, d]=(q- 1)bc-hoc-h'bd 

( 5 )  

with the multiplicative quantum determinant 

Detl,.q,&'d) =ad-qbc+ hac+h'bd 

=da-q-'cb-q-'hca-q-"db. 

These formulae can be arrived at via the following route, parallel to the one in (Kuper- 
shmidt 1992). We first start with the quasiclassical picture, i.e. with multiplicative Pois- 
son brackets on the group GL(2). For a vector space V every multiplicative Poisson 
bracket on GL( V )  is quadratic and is induced by a pair of quadratic Poisson structures 
on V and A'( V ) .  In our case Vis two-dimensional, and the corresponding quadratic 
Poisson structures on V and A'( V )  can be brought into the form 

{x.ul =y(rx+su) (7) 

{C? e}=.@? {e,  4 =U%% {% Irl=w& (8) 

where r, s, U, U, w are (even) constants. The multiplicative Poisson brackets induced on 
GL(2) are: 

{U, c)=c[ru+sc) 

{a, b}=-vab-wb2/2-u(2+be-ad) /2  

{b, d }  = (rb + sd)d+ s(bc- ad)  

{c, d j  = - vcd-u~/2-w(d2+ be- ad)/2 

{a, d }  = ( r  - u)bc + sed - uac/2 - wbd/2 

{b, e} =(r+ v)bc+scd+ uuc/2+ wbd/2. 

The Jacobj identities divide the parameter-space {r, s, U, U, w }  into the following three 
regions: 

(A) r=s=O; U, U, w are arbitrary. 
(B) rfO. Alinearchangeofbasisin Vcanmakes=O.Thenu=w=O;visarbitrary. 
(C) r=O, sfO. Then u=w=O; U is arbitrary. 
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Quantizing these three alternatives, we get: 

xy = yx 

C2=h5v r15= -q@l 

xy= q-'yx 

52=0 115= -p-'5rl 

[x, rl = hy2 

p=h'tq v5=-5rl 

which leads to formulae ( 5 ) ;  

which leads to formulae (1); and 

which leads to formulae (2). The two expressions for the quantum determinant, given 
by the formulae (6), (3) and (4), result from the standard definition 

f r j  =Det(M)& fff=Det(M)tlS (13) 

where 

It remains to settle the PBW problem for the quantum group GLJ,,,((2) (5). Since 
there exists no ordering of the generators a, b, c, d which makes the relations (5) of 
descending type, the diamond Lemma (Bergman 1978) cannot be used. (This is clear 
even on the level of the space A'(?') (12b).) In principle, one can use the criterion of 
(Drinfel'd 1986b), see also (Manin 1988), but the Drinfel'd criterion for quadratic 
commutation relations will be too cumbersome to apply. Instead, by a linear change 
of basis,in Vone can make h' vanish: Indeed, if h=h'=O then the relations (IO) are a 
particularcaseoftherelations (ll);ifh=O,h'#Othen wegeth#O,h'=O byinterchang- 
ing the basis vectors of Vand A'( V ) ;  finally, of h f O  ,and h'#O, we apply the matrix 

to the vectors G7 and ($). Choosing t to he a (non-zero) root of the quadraticequation 

h'f2+ (1 - q)t + h = 0 (15) 

we achieve q2 = 0. 

for the quantum group GLh,,(2) as: 
With the choice h'=O from now on, we can rewrite the commutation relations (5) 

ba=q-'a(b+ha)-hda'+q-'hc(b+ha) bd= db 

bc=q-'c(b +ha) ad=da+(l -q-')cb-q-'hca (16) 

ac=ca dc = q-'c(d+hc). 
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These relations satisfy the decreasing order condition for the ordering b>a>d>c.  The 
straightforward application of the diamond Lemma and the identity 

[beha,  d+hc]=O (17) 

show that the PBW property is satisfied for the quantum group GL*.,(2) (and, therefore, 
for the quantum group GLh.q,r(2)). The quantum determinant formulae (6) now become 

Deth,(M) =ad- qbc+ hac= du -q-'cb - q-'hca ( 180) 

which can also be written as 

Detr,(M)=ad-cb=dn-bc. 

W e  also have the formulae for the adjugate matrices M, and MI of M: 

MM,= MIM= Deth,,(M)l 

d+ hc 
M,=( - qc 

- q-' ( b  +ha) + hd+ h2c 
a - hqc 

MI==( - C  ;b ) .  

Formulae (186) and (20b) are somewhat mystifying, but they suggest how, using induc- 
tion on n, one can find analogues of the quantum group GL1,,J2) for the case of GL(n) 
with 1133. 
Further properties of the quantum group GL,,,,(2) foilow. 

(A) Formulae (16) show that the element cis normalizing, so that setting c=O one 
arrives at the upper-triangular subgroup A&(2) of GL,,.,(Z) consisting of matrices 
(9, 2) with the commutation relations 

[d ,a]=[d,b]=O ba=q-'a(b+ha) -hda. (21) 
(B) The quantum determinant D=Deth,@f) is also normalizing: 

aD = D(a - hqc) 

bD = D[q-'(b +ha) - hd- h2c] 
CD = qDc dD= D(d+ hc) 

(22) 

(23) 
Du = (a + hc)D Dc=q-'cD Dd= (d-  q-'hc)D 
Db=(qb-ha+qhd-h'c)D. 

Formulae. (23) are inverse to formulae (22). The latter can be obtained from the identity 

MID= MI (MM,) = (M,M)M,=DM, (24) 

which follows from formula (19). 
(C)  Using formulae (22), (23), one can show that 

M - ' E G L - I , , ~ - ~ ( ~ )  

Det-h.,-l(M-') = [Detl,.,(M)]-'. 

This suggests that, more generally, 

@ ~ G l ; , # ( 2 )  keZ 
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similar to the cases of GLq(2) and GLh(2). Interestingly, this is not true. Restricting 
from GL,,,(2) onto the upper-triangular subgroup A.&(2) (21) one quickly finds that 
for (27) to hoId one must have 

q= 1. (282 
(D) The same special value q= 1 can be arrived at via a different route. Let 

be a matrix whose entries commute with those of M. Then a linear functional on S 
('Trace'), invariant under the action 

S - M ' S M  (29) 
exists if and only if q= 1, in which case one has 

Tr(S) =SI' +SU + h ~ ~ t .  (30) 

I thank P Kulish for pointing out the paper by Zakrzewski (1991). This work was 
partially supported by the National Science Foundation. 
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